
Certificate Authority

1 - Repository
2 - Prepare CA server

Step 1 - Install libraries that are later used
Step 2 - Install the yubico-piv-tool
Step 3 - Install the yubikey-manager

3 - Prepare Yubikey
Step 1 - Activate CCID
Step 2 - Change default pins and management key of yubikey
Step 3- Generate RSA private keys for SSH Host CA

4 - Sign client's public keys
5 - Troubleshooting

Export public key
Reset PIV on Yubikey
Viewing an SSH certificate
Sign server's RSA key manually
Sign client's RSA key manually

1 - Repository

2 - Prepare CA server

Step 1 - Install libraries that are later used

To setup the yubikey the is used. It must be installed from source to work correctly. For the installation the following packages are yubico-piv-tool
needed:

apt-get install git cmake build-essential libtool libssl-dev pkg-config check libpcsclite-dev gengetopt help2man

Step 2 - Install the yubico-piv-tool

git clone https://github.com/Yubico/yubico-piv-tool.git

cd yubico-piv-tool

mkdir build; cd build
cmake ..
make
sudo make install

Step 3 - Install the yubikey-manager

To install the Yubikey manager check .https://developers.yubico.com/yubikey-manager/

3 - Prepare Yubikey

Step 1 - Activate CCID

Activate the USB interface CCID on the Yubikey. Activate the mode using:

https://github.com/jlangenegger/ssh_certificate/

This needs to be done on a offline machine!

https://developers.yubico.com/yubikey-manager/
https://github.com/jlangenegger/ssh_certificate/

ykman mode CCID

Step 2 - Change default pins and management key of yubikey

To prepare the PIV applet in the YubiKey the management key, the pin and the punk needs to be set.

yubico-piv-tool -a set-mgm-key -n 010203040506070801020304050607080102030405060708
yubico-piv-tool -k $key -a change-pin -P 123456 -N 123456
yubico-piv-tool -k $key -a change-puk -P 12345678 -N 12345678

Step 3- Generate RSA private keys for SSH Host CA

Then generate a RSA private key for the SSH Host CA, and generate a dummy X.509 certificate for that key. The only use for the X.509 certificate is to
make PIV/PKCS#11 happy. They want to be able to extract the public-key from the smart-card, and do that through the X.509 certificate.

YUBIKEYNUM=0
PATH_TO_CERTIFICATE="/etc/ssh-ca"

mkdir -p $PATH_TO_CERTIFICATE

generate key directly on yubikey and self-sign the certificate
yubico-piv-tool -k 123456 -s 9c -a generate -o yubikey$YUBIKEYNUM.pem
yubico-piv-tool -k 123456 -a verify-pin -a selfsign-certificate --valid-days 10000 -s 9c -S "
/CN=yubikey`$YUBIKEYNUM`/" -i yubikey$YUBIKEYNUM.pem -o yubikey$YUBIKEYNUM-cert.pem
import self-signed certificate
yubico-piv-tool -k 123456 -a import-certificate -s 9c -i yubikey$YUBIKEYNUM-cert.pem

convert public key to RSA
ssh-keygen -f yubikey$YUBIKEYNUM.pem -i -mPKCS8 > yubikey$YUBIKEYNUM.pub

move public key to correct place and remove leftovers
mv yubikey$YUBIKEYNUM.pub $PATH_TO_CERTIFICATE
rm yubikey$YUBIKEYNUM-cert.pem yubikey$YUBIKEYNUM.pem

4 - Sign client's public keys
To sign client's public keys there is the script to simplify the procedure.generate_client_certificate.sh' '
The scripts does have the following options:

-g
This takes a github user name as an argument and generates a certificate for each key stored in github.

-f
Instead of the github user name, one can provide a file that contains all the keys.
Nevertheless the flag is needed as the certificate 's name.'-g' holder

-V
Add the validity interval of a certificate
Per default a certificate is valid for seven days.
More information can be found here: validity_interval

-n
This flag restricts the certificate to a list of principals that the client is allowed to log in.

The output of is a .tar archive that contains the certificate, the public key that is used to authenticate servers as 'generate_client_certificate.sh'
well as an instruction to install the certificate on the client's machine. It is stored in the home directory .$HOME' /signed_keys'

5 - Troubleshooting

Export public key

PATH_TO_YKCS11="/usr/local/lib/libykcs11.so"
ssh-keygen -D PATH_TO_YKCS11 -e

https://man.openbsd.org/ssh-keygen#V

Reset PIV on Yubikey

yubico-piv-tool -averify-pin -P471112
yubico-piv-tool -averify-pin -P471112
yubico-piv-tool -averify-pin -P471112
yubico-piv-tool -averify-pin -P471112
yubico-piv-tool -achange-puk -P471112 -N6756789
yubico-piv-tool -achange-puk -P471112 -N6756789
yubico-piv-tool -achange-puk -P471112 -N6756789
yubico-piv-tool -achange-puk -P471112 -N6756789
yubico-piv-tool -areset
yubico-piv-tool -aset-chuid
yubico-piv-tool -aset-ccc

Viewing an SSH certificate

ssh-keygen -L -f hello_world-cert.pub
hello_world-cert.pub:
 Type: ssh-rsa-cert-v01@openssh.com host certificate
 Public key: RSA-CERT SHA256:diEzE7FgTzHHu87G3ssTLkJcGIikFWe832M3q7OMpS/0
 Signing CA: RSA SHA256:dGhZ6Zs5q9+6Ze3dt4zfbcmz+soOudwe56TfGvY+U
 Key ID: "hello_world"
 Serial: 0
 Valid: from 2020-05-29T06:09:00 to 2021-05-28T06:10:37
 Principals:
 hello_world.netdef.org
 Critical Options: (none)
 Extensions: (none)

Sign server's RSA key manually

YUBIKEYNUM=0
PATH_TO_CERTIFICATE="/etc/ssh-ca"
PATH_TO_YKCS11="/usr/local/lib/libykcs11.so"

ssh-keygen -D $PATH_TO_YKCS11
 -s $PATH_TO_CERTIFICATE/yubikey$YUBIKEYNUM.pub
 -I server_name \
 -h \
 -n server.netdef.org \
 -V +52w \
 /etc/ssh-ca/ssh_host_rsa_key.pub

Options explanation:

-D
is used to access the yubikey

-s
provides the public certificate to access the yubikey

-I server_name
The key identifier to include in the certificate.

-h
Generate a host certificate (instead of a user certificate)

-n server.netdef.org
The principal names to include in the certificate.
For host certificates this is a list of all names that the system is known by.
Note: Use the unqualified names carefully here in organizations where hostnames are not unique (vs.)ca.netdef.org ca.dev.netdef.org

-V +52w
The validity period.
For host certificates, you’ll probably want them pretty long lived.
This setting sets the validity period from now until 52 weeks hence.

/etc/ssh-ca/ssh_host_rsa_key.pub
The path to the host RSA public key to sign.
Our signed host key certificate will be /etc/ssh-ca/ssh_host_rsa_key-cert.pub.

http://server.netdef.org
http://ca.netdef.org
http://ca.dev.netdef.org

Sign client's RSA key manually

YUBIKEYNUM=0
PATH_TO_CERTIFICATE="/etc/ssh-ca"
PATH_TO_YKCS11="/usr/local/lib/libykcs11.so"

ssh-keygen -D $PATH_TO_YKCS11
 -s $PATH_TO_CERTIFICATE/yubikey$YUBIKEYNUM.pub
 -I client_name \
 -n root \
 -V +24h \
 /etc/ssh_ca/id_rsa.pub

Options explanation:

-D
is used to access the yubikey

-s
provides the public certificate to access the yubikey

-I client_name
The key identifier to include in the certificate.

-n root
The principal names to include in the certificate.
For client certificates this is a list of all users that the system is allowed to log in.

-V +24h
The validity period.
For client certificates, you’ll probably want them short lived.
This setting sets the validity period from now until 24 hours.
One an SSH session is authenticated the certificate can safely expire without impacting the established session.

/etc/ssh_ca/id_rsa.pub
The name of the host RSA public key to sign.
Our signed host key (certificate) will be /etc/ssh_ca/ssh_host_rsa_key-cert.pub.

	Certificate Authority

